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Hydroxylation of salicylate to 2,3- and 2,5-dihydroxy- 
benzoates (DHBs) is widely used as an index of 
hydroxyl radical (OH) formation in vivo and in vitro. 
Several recent studies indicate that peroxynitrite can 
lead to generation of DHBs from salicylate and it is 
uncertain as to whether or not OH' is involved. A sim- 
ilar problem may occur in the use of phenylalanine as 
an OH' detector. Hence formation of hydroxylation 
products from salicylate (or phenylalanine) may not in 
itself be a definitive index of OH' generation, espe- 
cially in cases where such generation in physiological 
systems is decreased by inhibitors of nitric oxide syn- 
thase. Determination of salicylate (or phenylalanine) 
nitration products can allow distinction between per- 
oxynitrite-dependent aromatic hydroxylation and that 
involving "real" OH. 

INTRODUCTION 

Highly-reactive hydroxyl radical (OH) is often 
generated in biological systems['] and numerous 
assays have been described to measure it. Of the 

methods available, probably the most specific are 
electron spin resonance-spin trapping, and 
aromatic hydroxylation, although both suffer 
problems when they are used in biological 
 system^.[^-^] The technique of aromatic hydroxy- 
lation is based upon a wealth of chemical litera- 
ture, some of it over 80 years old, showing the 
ability of O H  to add on to aromatic rings 
(reviewed in"]). The resulting radicals have a 
number of fates, depending on pH and on what 
else is present in the reaction system (e.g. 02, 
metal ions). Under physiologically-relevant con- 
ditions (pH 7.4, metal ions and oxygen present), 
formation of hydroxylated aromatic products 
seems a favoured reaction pathway and so the 
formation of such products is often used as an 
index of O H  generation, although the isomeric 
distribution of products observed can vary under 
different reaction condition~.[~~~-~1 
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Several different aromatic ”targets” have been 
used for the detection of OH. Currently the most 
popular is salicylate (2-hydroxybenzoate): attack 
of O H  upon salicylate generates 2,3- and 2,5- 
dihydroxybenzoates (DHBs) and some catechol 
(Fig. 1). Formation of these two DHBs has been 
used as an assay for O H  formation both in vitro 
and in vivo (examples are given in refer- 
ence~[~-~~]) .  In some cases the O H  formation has 
been decreased by inhibitors of nitric oxide syn- 
thase, or other evidence has been obtained sug- 
gesting that nitric oxide (NO) is involved in O H  
formation (for examples ~ e e [ ~ J ~ J ~ l ) .  

In 1991, we published a ”Cautionary note” about 
the use of aromatic hydroxylation of salicylate, 
emphasising that it is necessary to measure both 
2,3- and 2,5-DHBs as indices of O H  trapping; 
measuring 2,5-DHB alone is insufficient.[21] This 
cautionary note was ”revisited” in 1995 when a 
possible artefactual O H  formation involving 
metal ion release from microdialysis equipment 
used to infuse salicylate for measurement of cere- 
bral free radical generation was identified.IZ1 

A THIRD CAUTIONARY NOTE: 

SALICYLATE HYDROXYLATION 
PEROXYNITRITE-DEPENDENT 

Several authors have shown that addition of per- 
oxynitrite (a species formed, among other mech- 
anisms, by the rapid combination of 02’- and 
NO[23,241) to salicylate causes formation of 2,3- 
and ~ ,~-DHBs. [~’ -~~]  Salicylate hydroxylation on 
addition of ONOO- is inhibited by several OH 

and a simple explanation is that 
salicylate is trapping O H  produced when 
ONOC- protonates and then breaks 
However, evidence supporting O H  production 
from ONOO- is matched by considerable evi- 
dence against it.[32-3il Peroxynitrite chemistry is 

if it is true that no O H  is 
formed during ONOO- breakdown, it follows 
that the salicylate hydroxylation is due to other 
ONOO--derived  specie^.[^^,^^] If so, it further 
follows that formation of 2,3- and 2,5-DHBs 
from salicylate is not in itself diagnostic of O H  
production. 

CO2H b”” 
Sal~cylic acid 

t? OH 

2.3-Dihydroxybcrvoate 7% 

HO -b”” ‘ 
2.5-Dihydroxybenzoate 

5-Nitrosalicylic acid 

Catechol 

NOt‘ [NO: I 
)JJ 

NO2 
5-Nitrocatechol 

FIGURE 1 
are minor products. 

Hydroxylated and nitrated products of salicylic acid detected by our HPLC system. Catechol and hence 5-nitrocatechol 
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HYDROXY LATION BY PEROXYNITRITE 241 

CAN PHENYLALANINE HELP? 

In principle, almost any aromatic compound 
can be used[2] as a detector for O H  ; one alterna- 
tive to salicylate is phenylalanine. Both L-and 
D-phenylalanine are hydroxylated to give three 
isomeric tyrosines, ortho-, meta- and para- tyrosines 
(Figure 2).141-451 Although currently less popular 
than salicylate, phenylalanine has some advan- 
tages for detection of O H  in vivo (reviewed in[461) 
and its use is in~reasing.[~~-*~] For example, 
L-phenylalanine enters cells through an amino 
acid carrier that will not transport D-phenylala- 
nine, so a comparison of results using the two 
isomers should help to distinguish intracellular 
and extracellular OH 

However, addition of ONOO- to solutions of 
phenylalanine gives ortho-, meta- and para- 
tyrosines and their formation is inhibited by O H  
 scavenger^.[^^,^^] Again, it is possible to interpret 
this observation as evidence[26] for O H  formation 
from ONOO-. It is also possible to argue, how- 
ever, that ONOO--derived species different from 
O H  can hydroxylate phenylalanine. If this is so, 
it follows that formation of three isomeric 
tyrosines from phenylalanine cannot in itself be 
held to be diagnostic of O H  production. 

K 

R R 

6 s  OH 

h 

FIGURE 2 
danine. Only products identified in our system are included. 

Hydroxylated and nitrated products of phenyl- 

A SOLUTION TO THE CONUNDRUM. 
MEASURE NITRATION PRODUCTS 

Given the arguments, confusion and evidence on 
both sides about whether or not some O H  is 
formed when ONOO- breaks down, we cannot 
be fully confident that formation of specific 
hydroxylation products from salicylate and 
phenylalanine (Figs. 1,2) is in itself diagnostic of 
O H  formation. The doubt is greatest in cases 
where NO appears to be involved in the "OH 
generation" (e.g. reference~~~J~~~"1). Peroxynitrite 
also leads to generation of hydroxylation prod- 
ucts (perhaps via OH, but perhaps not). 
Hydroxyl radical scavengers could inhibit dam- 
age in both 

There is a solution, however. "Real" O H  
hydroxylates aromatic compounds as  well as 
leading to other reactions such as decarboxyla- 
tion and dimerization, to extents depending on 
reaction conditions.fZ1 It can never nitrate aro- 
matic compounds. However, addition of ONOO- 
to salicylate or phenylalanine leads to generation 
not only of hydroxylated products but also of 
nitrated ones, e.g. 5-nitrosalicylate (and trace 
amounts of 5-nitrocatechol) have been identified 
from salicylate, or 3-nitrotyrosine and p-nitro- 
phenylalanine from phenylalanine.[261 Nitrated 
aromatic compounds can be clearly separated 
from hydroxylation products by HPLC (Figs. 3,4, 
5, 6). If such nitration products are observed as 
well as 2,3- and 2,5-DHBs, or 0-, m- and p -  
tyrosines, one should worry about ONOO-. If 
they are not observed, it suggests that the 
hydroxylation is due to "real" OH, especially if 
the use of nitric oxide synthase inhibitors in 
physiological systems does not decrease forma- 
tion of hydroxylated products. Of course, the 
identity of peaks on HPLC should always be val- 
idated, e.g. by diode array (Figs. 3-6). 
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FIGURE 3 A. HPLC separation of a standard mixture of sali- 
cylate and its hydroxylation and nitration products following 
our previously-published procedurezh (2,3-DHB and 2,5-DHf3 
each at 25 pM, 5-nitrocatechol at 25 pM, 5-nitrosalicylic acid at 
25 pM, and salicylic acid at 1.25 mM). Essentially 100 pl of the 
standard mixture was injected onto a nucleocil5 pm C18 column 
(30 x 4.6 mm) with a Hibar guard column and 500 mM 
KH2P04-KOH (pH 6.6) plus methanol (80:20, v/v) at a flow rate 
of 1 ml min-' as the eluent. Detection was on a photo-&ode 
array detector (Gynkotek-UVD 320, HPLC Technology Ltd) 
set at 320 nm. Peaks before 4 min are due to the solvent front. 
B. UV absorbance spectrum of each peak on the photo-diode 
array detector. (See Color Plate I at the back of this issue.) 
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FIGURE 5 A. HPLC separation of a standard mixture of 
phenylalanine and its hydroxylation and nitration products 
(para-, nieta-, ortko-, and 3-nitro-tyrosines, p-nitrophenylala- 
nine, 5 pM each; and phenylalanine, 200 pM) following our 
previously-published procedure.2h Essentially 100 p1 of the 
standard mixture was injected onto a nucleocil5 pm CI8 column 
(25 x 4.6 mm) with a Hibar guard column and 500 mM 
KH2P04-H3P04 (pH 3.01) plus methanol (90:10, viv) as eluent 
at a flow rate of 1 ml min-'. Detection was on a photo-diode 
array detector (Gynkotek--UVD-320, HPLC Technology Ltd) 
set at 270 nm. Peaks before 4 min are due to the solvent fr0nt.B. 
UV absorbance spectrum of each peaks on the photo-diode 
array detector. (See Color Plate 111 at the back of this issue.) 
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