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Hydroxylation of salicylate to 2,3- and 2,5-dihydroxy-
benzoates (DHBs) is widely used as an index of
hydroxyl radical (OH") formation in vivo and in vitro.
Several recent studies indicate that peroxynitrite can
lead to generation of DHBs from salicylate and it is
uncertain as to whether or not OH' is involved. A sim-
ilar problem may occur in the use of phenylalanine as
an OH" detector. Hence formation of hydroxylation
products from salicylate (or phenylalanine) may not in
itself be a definitive index of OH'" generation, espe-
cially in cases where such generation in physiological
systems is decreased by inhibitors of nitric oxide syn-
thase. Determination of salicylate {(or phenylalanine)
nitration products can allow distinction between per-
oxynitrite-dependent aromatic hydroxylation and that
involving “real” OH'.

INTRODUCTION
Highly-reactive hydroxyl radical (OH’) is often

generated in biological systems!"! and numerous
assays have been described to measure it. Of the
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methods available, probably the most specific are
electron spin resonance-spin trapping, and
aromatic hydroxylation, although both suffer
problems when they are used in biological
systems.>® The technique of aromatic hydroxy-
lation is based upon a wealth of chemical litera-
ture, some of it over 80 years old, showing the
ability of OH' to add on to aromatic rings
(reviewed in?). The resulting radicals have a
number of fates, depending on pH and on what
else is present in the reaction system (e.g. O,,
metal ions). Under physiologically-relevant con-
ditions (pH 7.4, metal ions and oxygen present),
formation of hydroxylated aromatic products
seems a favoured reaction pathway and so the
formation of such products is often used as an
index of OH' generation, although the isomeric
distribution of products observed can vary under
different reaction conditions.!>>®!
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Several different aromatic “targets” have been
used for the detection of OH". Currently the most
popular is salicylate (2-hydroxybenzoate): attack
of OH' upon salicylate generates 2,3- and 2,5-
dihydroxybenzoates (DHBs) and some catechol
(Fig. 1). Formation of these two DHBs has been
used as an assay for OH" formation both in vitro
and in vivo (examples are given in refer-
ences®8l), In some cases the OH" formation has
been decreased by inhibitors of nitric oxide syn-
thase, or other evidence has been obtained sug-
gesting that nitric oxide (NO’) is involved in OH’
formation (for examples see!®2),

In 1991, we published a “cautionary note” about
the use of aromatic hydroxylation of salicylate,
emphasising that it is necessary to measure both
2,3~ and 2,5-DHBs as indices of OH' trapping;
measuring 2,5-DHB alone is insufficient.’!! This
cautionary note was “revisited” in 1995 when a
possible artefactual OH' formation involving
metal ion release from microdialysis equipment
used to infuse salicylate for measurement of cere-
bral free radical generation was identified./?!

A THIRD CAUTIONARY NOTE:
PEROXYNITRITE-DEPENDENT
SALICYLATE HYDROXYLATION

Several authors have shown that addition of per-
oxynitrite (a species formed, among other mech-
anisms, by the rapid combination of O, and
NO?24) to salicylate causes formation of 2,3-
and 2,5-DHBs./”%#1 Galicylate hydroxylation on
addition of ONOO" is inhibited by several OH'
scavengers!®! and a simple explanation is that
salicylate is trapping OH" produced when
ONOO™ protonates and then breaks down 31l
However, evidence supporting OH" production
from ONOO" is matched by considerable evi-
dence against it.*”*"] Peroxynitrite chemistry is
complex.[B323840L, if it js true that no OH" is
formed during ONOO"~ breakdown, it follows
that the salicylate hydroxylation is due to other
ONOO™—-derived species.™>?! If so, it further
follows that formation of 2,3- and 2,5-DHBs
from salicylate is not in itself diagnostic of OH"
production.
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2,3-Dihydroxybenzoate CO H
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FIGURE 1 Hydroxylated and nitrated products of salicylic acid detected by our HPLC system. Catechol and hence 5-nitrocatechol

are minor products.
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CAN PHENYLALANINE HELP?

In principle, almost any aromatic compound
can be used? as a detector for OH" ; one alterna-
tive to salicylate is phenylalanine. Both L-and
D-phenylalanine are hydroxylated to give three
isomeric tyrosines, ortho-, meta- and para- tyrosines
(Figure 2).147%1 Although currently less popular
than salicylate, phenylalanine has some advan-
tages for detection of OH' in vivo (reviewed in!*l)
and its use is increasing.*’™*! For example,
L-phenylalanine enters cells through an amino
acid carrier that will not transport D-phenylala-
nine, so a comparison of results using the two
isomers should help to distinguish intracellular
and extracellular OH’ generation.*¢!

However, addition of ONOQO™ to solutions of
phenylalanine gives ortho-, meta- and para-
tyrosines and their formation is inhibited by OH"
scavengers.?*?’l Again, it is possible to interpret
this observation as evidence!? for OH" formation
from ONOO". It is also possible to argue, how-
ever, that ONOO™-derived species different from
OH' can hydroxylate phenylalanine. If this is so,
it follows that formation of three isomeric
tyrosines from phenylalanine cannot in itself be
held to be diagnostic of OH" production.

R
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OH-

R R

o-Tyrosine OH
2-Tyrosine
OH NQy*/ NO,;*
NO,
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R = CH,CH(NH, JCOH :

OH
3-Nitratyrosine
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FIGURE 2 Hydroxylated and nitrated products of phenyl-
alanine. Only products identified in our system are included.

A SOLUTION TO THE CONUNDRUM:
MEASURE NITRATION PRODUCTS

Given the arguments, confusion and evidence on
both sides about whether or not some OH" is
formed when ONOO™ breaks down, we cannot
be fully confident that formation of specific
hydroxylation products from salicylate and
phenylalanine (Figs. 1, 2) is in itself diagnostic of
OH' formation. The doubt is greatest in cases
where NO' appears to be involved in the “OH"
generation” (e.g. references!®!>?"). Peroxynitrite
also leads to generation of hydroxylation prod-
ucts (perhaps via OH’, but perhaps not).
Hydroxyl radical scavengers could inhibit dam-
age in both cases.?62%481

There is a solution, however. “Real” OH’
hydroxylates aromatic compounds as well as
leading to other reactions such as decarboxyla-
tion and dimerization, to extents depending on
reaction conditions.!”! It can never nitrate aro-
matic compounds. However, addition of ONOO™
to salicylate or phenylalanine leads to generation
not only of hydroxylated products but also of
nitrated ones, e.g. 5-nitrosalicylate (and trace
amounts of 5-nitrocatechol) have been identified
from salicylate, or 3-nitrotyrosine and p-nitro-
phenylalanine from phenylalanine.?! Nitrated
aromatic compounds can be clearly separated
from hydroxylation products by HPLC (Figs. 3, 4,
5, 6). If such nitration products are observed as
well as 2,3- and 2,5-DHBs, or o-, m- and p-
tyrosines, one should worry about ONOO™. If
they are not observed, it suggests that the
hydroxylation is due to “real” OH’, especially if
the use of nitric oxide synthase inhibitors in
physiological systems does not decrease forma-
tion of hydroxylated products. Of course, the
identity of peaks on HPLC should always be val-
idated, e.g. by diode array (Figs. 3-6).
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FIGURE 3 A. HPLC separation of a standard mixture of sali-
cylate and its hydroxylation and nitration products following
our previously-published procedure® (2,3-DHB and 2,5-DHB
each at 25 uM, 5-nitrocatechol at 25 pM, 5-nitrosalicylic acid at
25 uM, and salicylic acid at 1.25 mM). Essentially 100 pl of the
standard mixture was injected onto a nucleocil 5 um C;4 column
(30 x 4.6 mm) with a Hibar guard column and 500 mM
KH,PO,-KOH (pH 6.6) plus methanol (80:20, v/v) at a flow rate
of 1 ml min! as the eluent. Detection was on a photo-diode
array detector (Gynkotek—UVD 320, HPLC Technology Ltd)
set at 320 nm. Peaks before 4 min are due to the solvent front.
B. UV absorbance spectrum of each peak on the photo-diode
array detector. (See Color Plate I at the back of this issue.)
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Color Plate I (See page 242 Figure 3) A. HPLC separation of a standard mixture of salicylate and its hydroxylation and nitration products
following our previously-published procedure® (2,3-DHB and 2,5-DHB each at 25 UM, 5-nitrocatechol at 25 pM, 5-nitrosalicylic acid at 25
UM, and salicylic acid at 1.25 mM). Essentially 100l of the standard mixture was injected onto a nucleocil 5 UM C ; column (30 x 4.6 mm)
with a Hibar guard column and 500 mM KH,PO,-KOH (pH 6.6) plus methanol (80:20, v/v) at a flow rate of 1 ml min' as the eluent.
Detection was on a photo-diode array detector (Gynkotek—UVD 320, HPLC Technology Ltd) set at 320 nm. Peaks before 4 min are due to
the solvent front. B. UV absorbance spectrum of each peak on the photo-diode array detector.
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(peak at ~ 8.3 mins on Fig. 4A) is presumably produced in amounts too small to detect, but the nitrosalicylate peak is clear. Peaks before 4 min
are due to the solvent front. C. UV absorbance spectral match of each peak detected with that of authentic standards. At this pH nitro-
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Color Plate III (See page 243 Figure 5) A. HPLC separation of a standard mixture of phenylalanine and its hydroxylation and nitration
products (para-, meta-, ortho-, and 3-nitro-tyrosines, p-nittophenylalanine, 5 uM each; and phenylalanine, 200 pM) following our previ-
ously-published procedure.* Essentially 100l of the staudard mixture was injected onto a nucleocil 5 tm C, column (25 x 4.6 mm) with
aHibar guard column and 500 mM KH,PO,-H,PO, (pH 3.01) plus methanol (90:10, v/v) as eluent at a flow rate of 1 ml min*'. Detection was
on a photo-diode array detector (Gynkotek—UVD-320, HPLC Technology Ltd) set at 270 nm. Peaks before 4 min are due to the solvent
front. B. UV absorbance spectrum of each peaks on the photo-diode array detector.
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of each the peak detected with those of authentic standards.
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