

Commentary

Hydroxylation of Salicylate and Phenylalanine as Assays for Hydroxyl Radicals: a Cautionary Note Visited for the Third Time

BARRY HALLIWELL* and HARPARKASH KAUR

Neurodegenerative Disease Research Centre, King's College, Manresa Road, London SW3 6LX, UK

Accepted by Prof. C. Rice-Evans

(Received 17 February 1997; In revised form 17 April 1997)

Hydroxylation of salicylate to 2,3- and 2,5-dihydroxybenzoates (DHBs) is widely used as an index of hydroxyl radical (OH^{\cdot}) formation *in vivo* and *in vitro*. Several recent studies indicate that peroxynitrite can lead to generation of DHBs from salicylate and it is uncertain as to whether or not OH^{\cdot} is involved. A similar problem may occur in the use of phenylalanine as an OH^{\cdot} detector. Hence formation of hydroxylation products from salicylate (or phenylalanine) may not in itself be a definitive index of OH^{\cdot} generation, especially in cases where such generation in physiological systems is decreased by inhibitors of nitric oxide synthase. Determination of salicylate (or phenylalanine) nitration products can allow distinction between peroxynitrite-dependent aromatic hydroxylation and that involving "real" OH^{\cdot} .

INTRODUCTION

Highly-reactive hydroxyl radical (OH^{\cdot}) is often generated in biological systems^[1] and numerous assays have been described to measure it. Of the

methods available, probably the most specific are electron spin resonance-spin trapping, and aromatic hydroxylation, although both suffer problems when they are used in biological systems.^[2-5] The technique of aromatic hydroxylation is based upon a wealth of chemical literature, some of it over 80 years old, showing the ability of OH^{\cdot} to add on to aromatic rings (reviewed in^[2]). The resulting radicals have a number of fates, depending on pH and on what else is present in the reaction system (e.g. O_2 , metal ions). Under physiologically-relevant conditions (pH 7.4, metal ions and oxygen present), formation of hydroxylated aromatic products seems a favoured reaction pathway and so the formation of such products is often used as an index of OH^{\cdot} generation, although the isomeric distribution of products observed can vary under different reaction conditions.^[2,5-8]

* Corresponding author.

Several different aromatic "targets" have been used for the detection of OH[•]. Currently the most popular is salicylate (2-hydroxybenzoate): attack of OH[•] upon salicylate generates 2,3- and 2,5-dihydroxybenzoates (DHBs) and some catechol (Fig. 1). Formation of these two DHBs has been used as an assay for OH[•] formation both *in vitro* and *in vivo* (examples are given in references^[9-18]). In some cases the OH[•] formation has been decreased by inhibitors of nitric oxide synthase, or other evidence has been obtained suggesting that nitric oxide (NO[•]) is involved in OH[•] formation (for examples see^[9,19,20]).

In 1991, we published a "cautionary note" about the use of aromatic hydroxylation of salicylate, emphasising that it is necessary to measure both 2,3- and 2,5-DHBs as indices of OH[•] trapping; measuring 2,5-DHB alone is insufficient.^[21] This cautionary note was "revisited" in 1995 when a possible artefactual OH[•] formation involving metal ion release from microdialysis equipment used to infuse salicylate for measurement of cerebral free radical generation was identified.^[22]

A THIRD CAUTIONARY NOTE: PEROXYNITRITE-DEPENDENT SALICYLATE HYDROXYLATION

Several authors have shown that addition of peroxynitrite (a species formed, among other mechanisms, by the rapid combination of O₂^{•-} and NO[•]^[23,24]) to salicylate causes formation of 2,3- and 2,5-DHBs.^[25-27] Salicylate hydroxylation on addition of ONOO⁻ is inhibited by several OH[•] scavengers^[26] and a simple explanation is that salicylate is trapping OH[•] produced when ONOO⁻ protonates and then breaks down.^[28-31] However, evidence supporting OH[•] production from ONOO⁻ is matched by considerable evidence against it.^[32-37] Peroxynitrite chemistry is complex.^[23,32,38-40]; if it is true that no OH[•] is formed during ONOO⁻ breakdown, it follows that the salicylate hydroxylation is due to other ONOO⁻-derived species.^[25,26] If so, it further follows that formation of 2,3- and 2,5-DHBs from salicylate is *not* in itself diagnostic of OH[•] production.

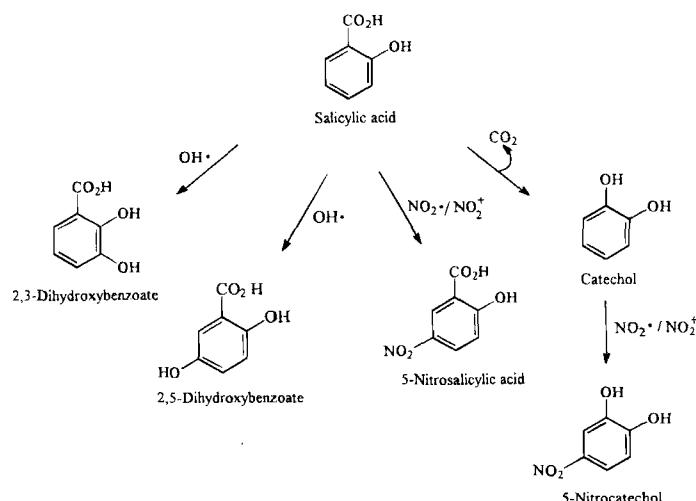


FIGURE 1 Hydroxylated and nitrated products of salicylic acid detected by our HPLC system. Catechol and hence 5-nitrocatechol are minor products.

CAN PHENYLALANINE HELP?

In principle, almost any aromatic compound can be used^[2] as a detector for OH[·]; one alternative to salicylate is phenylalanine. Both L-and D-phenylalanine are hydroxylated to give three isomeric tyrosines, *ortho*-, *meta*- and *para*-tyrosines (Figure 2).^[41–45] Although currently less popular than salicylate, phenylalanine has some advantages for detection of OH[·] *in vivo* (reviewed in^[46]) and its use is increasing.^[41–47] For example, L-phenylalanine enters cells through an amino acid carrier that will not transport D-phenylalanine, so a comparison of results using the two isomers should help to distinguish intracellular and extracellular OH[·] generation.^[46]

However, addition of ONOO[·] to solutions of phenylalanine gives *ortho*-, *meta*- and *para*-tyrosines and their formation is inhibited by OH[·] scavengers.^[26,29] Again, it is possible to interpret this observation as evidence^[26] for OH[·] formation from ONOO[·]. It is also possible to argue, however, that ONOO[·]-derived species different from OH[·] can hydroxylate phenylalanine. If this is so, it follows that formation of three isomeric tyrosines from phenylalanine cannot in itself be held to be diagnostic of OH[·] production.

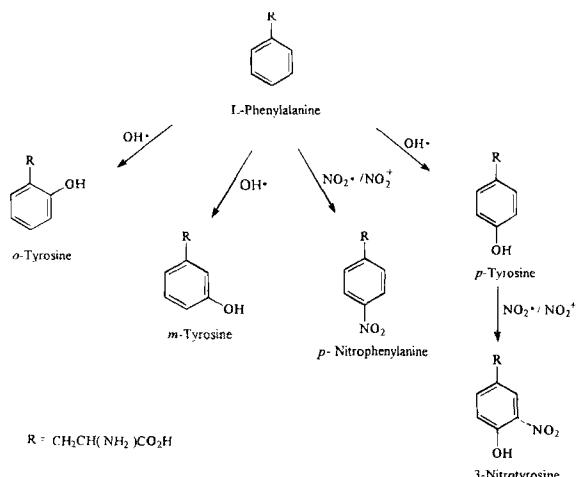


FIGURE 2 Hydroxylated and nitrated products of phenylalanine. Only products identified in our system are included.

A SOLUTION TO THE CONUNDRUM: MEASURE NITRATION PRODUCTS

Given the arguments, confusion and evidence on both sides about whether or not some OH[·] is formed when ONOO[·] breaks down, we cannot be fully confident that formation of specific hydroxylation products from salicylate and phenylalanine (Figs. 1, 2) is in itself diagnostic of OH[·] formation. The doubt is greatest in cases where NO[·] appears to be involved in the "OH[·] generation" (e.g. references^[9,19,20]). Peroxynitrite also leads to generation of hydroxylation products (perhaps via OH[·], but perhaps not). Hydroxyl radical scavengers could inhibit damage in both cases.^[26,29,48]

There is a solution, however. "Real" OH[·] hydroxylates aromatic compounds as well as leading to other reactions such as decarboxylation and dimerization, to extents depending on reaction conditions.^[2] It can never *nitrates* aromatic compounds. However, addition of ONOO[·] to salicylate or phenylalanine leads to generation not only of hydroxylated products but also of nitrated ones, e.g. 5-nitrosalicylate (and trace amounts of 5-nitrocatechol) have been identified from salicylate, or 3-nitrotyrosine and *p*-nitrophenylalanine from phenylalanine.^[26] Nitrated aromatic compounds can be clearly separated from hydroxylation products by HPLC (Figs. 3, 4, 5, 6). If such nitrated products are observed as well as 2,3- and 2,5-DHBs, or *o*-, *m*- and *p*-tyrosines, one should worry about ONOO[·]. If they are not observed, it suggests that the hydroxylation is due to "real" OH[·], especially if the use of nitric oxide synthase inhibitors in physiological systems does not decrease formation of hydroxylated products. Of course, the identity of peaks on HPLC should always be validated, e.g. by diode array (Figs. 3–6).

Acknowledgements

We are grateful to the Arthritis and Rheumatism Council for research support.

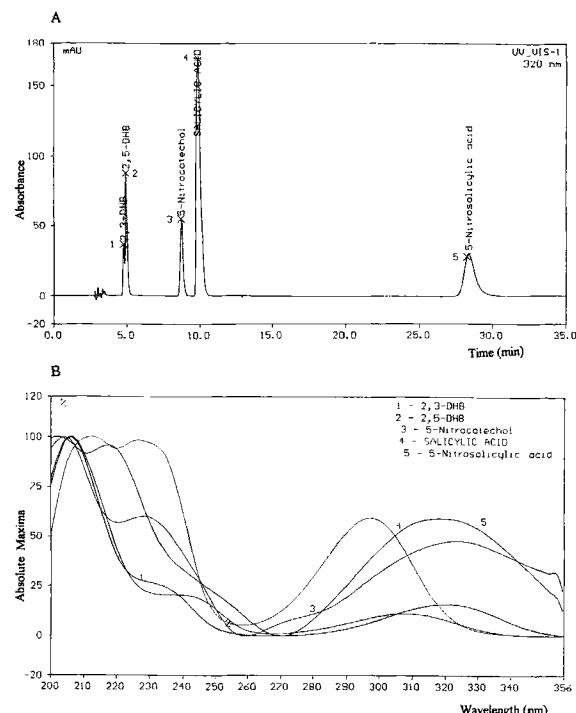


FIGURE 3 **A.** HPLC separation of a standard mixture of salicylate and its hydroxylation and nitration products following our previously-published procedure²⁶ (2,3-DHB and 2,5-DHB each at 25 μ M, 5-nitrocatechol at 25 μ M, 5-nitrosalicylic acid at 25 μ M, and salicylic acid at 1.25 mM). Essentially 100 μ l of the standard mixture was injected onto a nucleocil 5 μ m C₁₈ column (30 \times 4.6 mm) with a Hibar guard column and 500 mM KH₂PO₄-KOH (pH 6.6) plus methanol (80:20, v/v) at a flow rate of 1 ml min⁻¹ as the eluent. Detection was on a photo-diode array detector (Gynkotek—UVD 320, HPLC Technology Ltd) set at 320 nm. Peaks before 4 min are due to the solvent front. **B.** UV absorbance spectrum of each peak on the photo-diode array detector. (See Color Plate I at the back of this issue.)

References

- [1] Halliwell, B. and Gutteridge, J. M. C. (1990). Role of free radicals and catalytic metal ions in human disease: an overview. *Methods in Enzymology*, **186**, 1-85.
- [2] Halliwell, B., Grootveld, M. and Gutteridge, J. M. C. (1989). Methods for the measurement of hydroxyl radicals in biochemical systems: deoxyribose degradation and aromatic hydroxylation. *Methods in Biochemical Analysis*, **33**, 59-90.
- [3] Pou, S., Hassett, D. J., Britigan, B. E., Cohen, M. S. and Rosen, G. M. (1989). Problems associated with spin-trapping oxygen-centered free radicals in biological systems. *Analytical Biochemistry*, **177**, 1-6.
- [4] Britigan, B. E., Cohen, M. S. and Rosen, G. M. (1987). Detection of the production of oxygen-centered free radicals by human neutrophils using spin trapping techniques: a critical perspective. *Journal of Leukocyte Biology*, **41**, 349-362.
- [5] Halliwell, B. and Gutteridge, J. M. C. (1989). *Free Radicals in Biology and Medicine*, second edition, Oxford University Press, Oxford, UK.
- [6] Walling, C. (1975). Fenton's reagent revisited. *Journal of the American Chemical Society*, **8**, 125-131.
- [7] Maskos, Z., Rush, J. D. and Koppenol, W. (1990). The hydroxylation of the salicylate anion by a Fenton reaction and γ -radiolysis: a consideration of the respective mechanisms. *Free Radical Biology and Medicine*, **8**, 153-162.
- [8] Kurata, T., Watanabe, Y., Katoh, M. and Sawaki, Y. (1988). Mechanism of aromatic hydroxylation in the Fenton and related reactions. One-electron oxidation and the NIH shift. *Journal of the American Chemical Society*, **110**, 7472-7478.

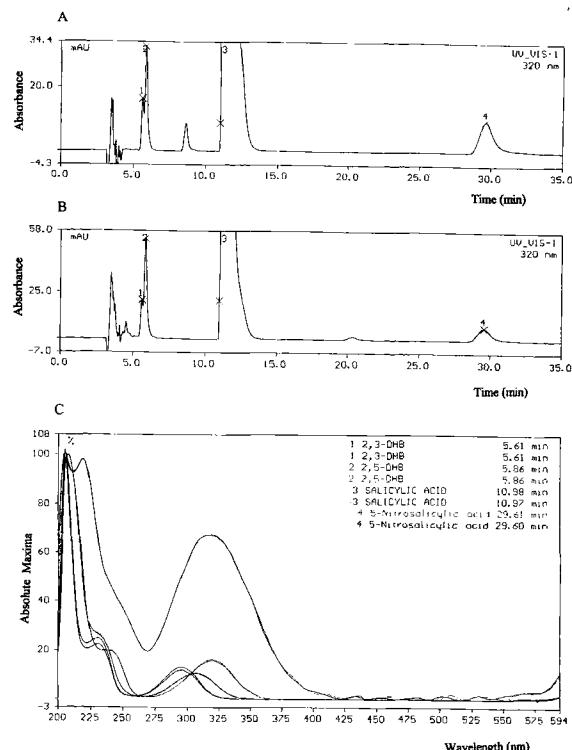


FIGURE 4 **A.** HPLC separation of a standard mixture as in Fig. 3A with 5-nitrocatechol at 5 μ M, 5-nitrosalicylic acid at 10 μ M and salicylic acid at 5 mM instead of the amounts stated above. (The scale is expanded). **B.** Separation of the above products from a reaction mixture resulting from addition of peroxynitrite (1.0 mM) to salicylate (5 mM) in 100 mM phosphate buffer pH 7.4. Nitrocatechol (peak at ~ 8.3 mins on Fig. 4A) is presumably produced in amounts too small to detect, but the nitrosalicylate peak is clear. Peaks before 4 min are due to the solvent front. **C.** UV absorbance spectral match of each peak detected with that of authentic standards. At this pH nitro-compounds have little absorbance at higher wavelength. (See Color Plate II at the back of this issue.)

icals by human neutrophils using spin trapping techniques: a critical perspective. *Journal of Leukocyte Biology*, **41**, 349-362.

- [5] Halliwell, B. and Gutteridge, J. M. C. (1989). *Free Radicals in Biology and Medicine*, second edition, Oxford University Press, Oxford, UK.
- [6] Walling, C. (1975). Fenton's reagent revisited. *Journal of the American Chemical Society*, **8**, 125-131.
- [7] Maskos, Z., Rush, J. D. and Koppenol, W. (1990). The hydroxylation of the salicylate anion by a Fenton reaction and γ -radiolysis: a consideration of the respective mechanisms. *Free Radical Biology and Medicine*, **8**, 153-162.
- [8] Kurata, T., Watanabe, Y., Katoh, M. and Sawaki, Y. (1988). Mechanism of aromatic hydroxylation in the Fenton and related reactions. One-electron oxidation and the NIH shift. *Journal of the American Chemical Society*, **110**, 7472-7478.

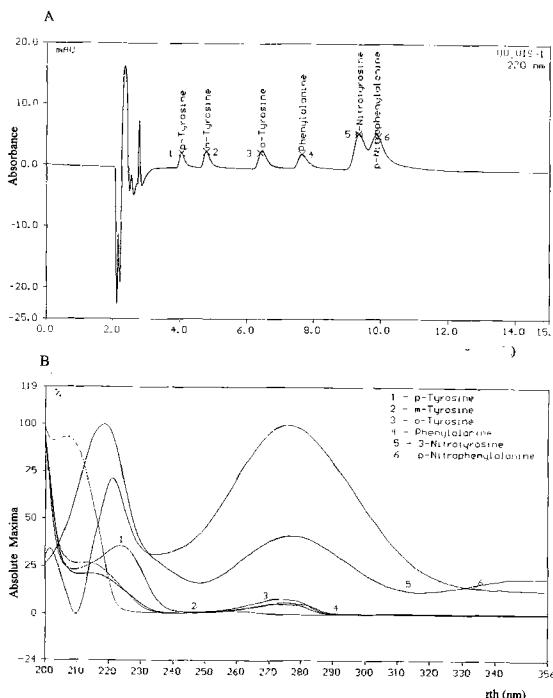
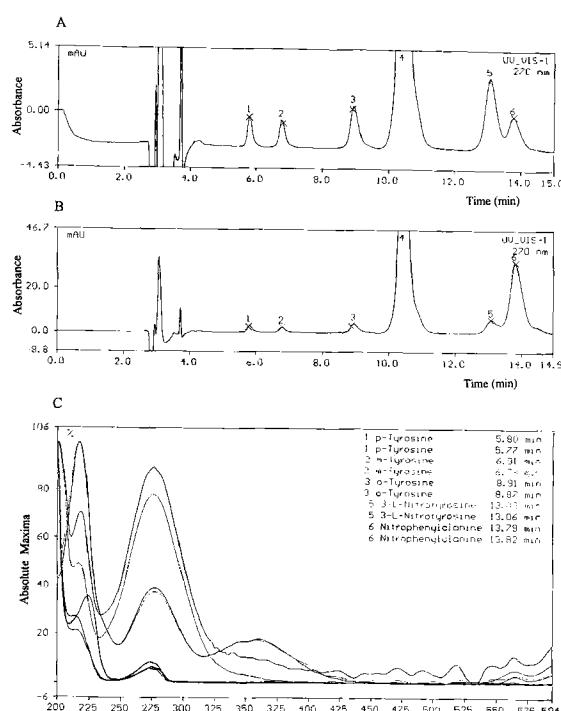
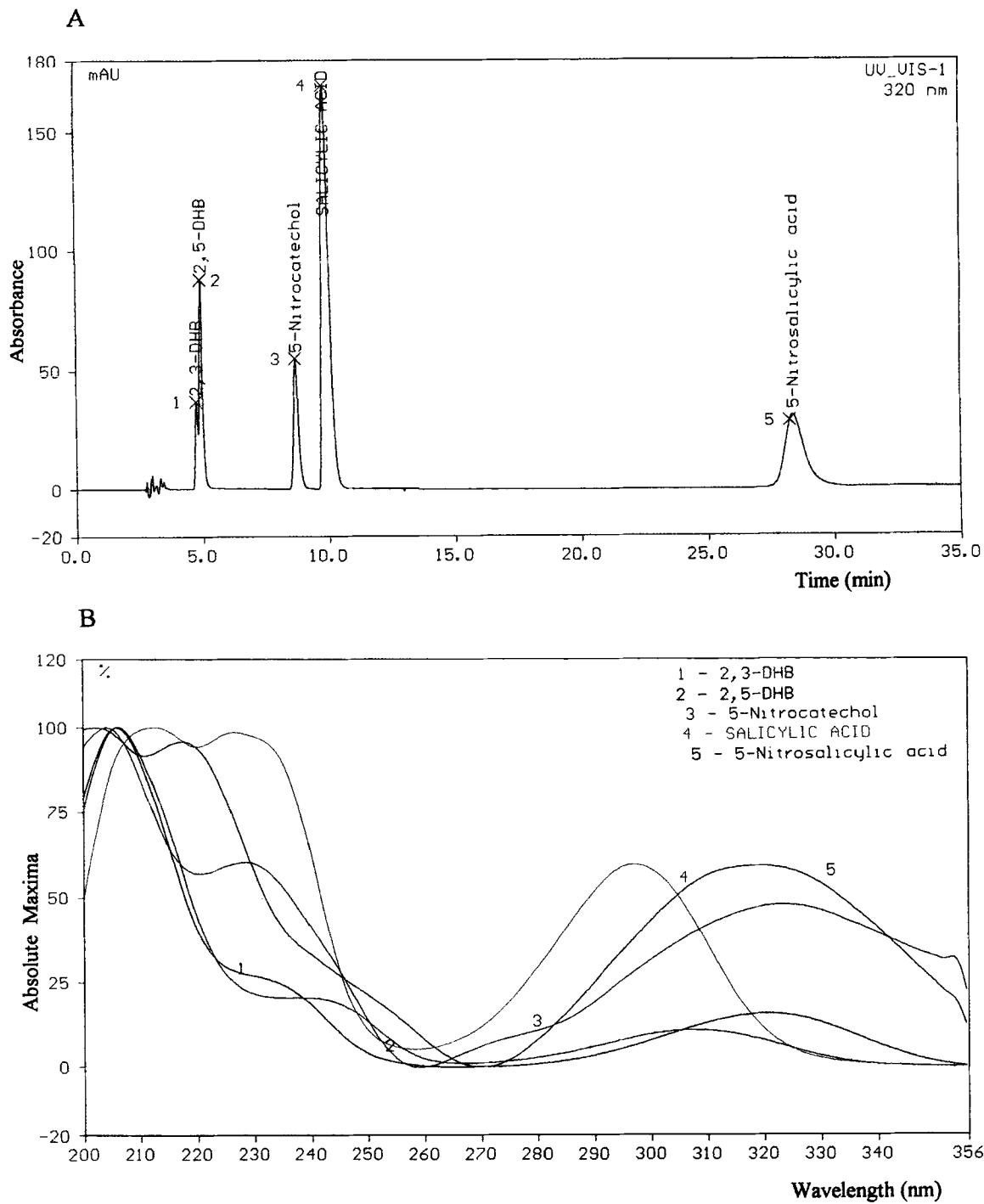
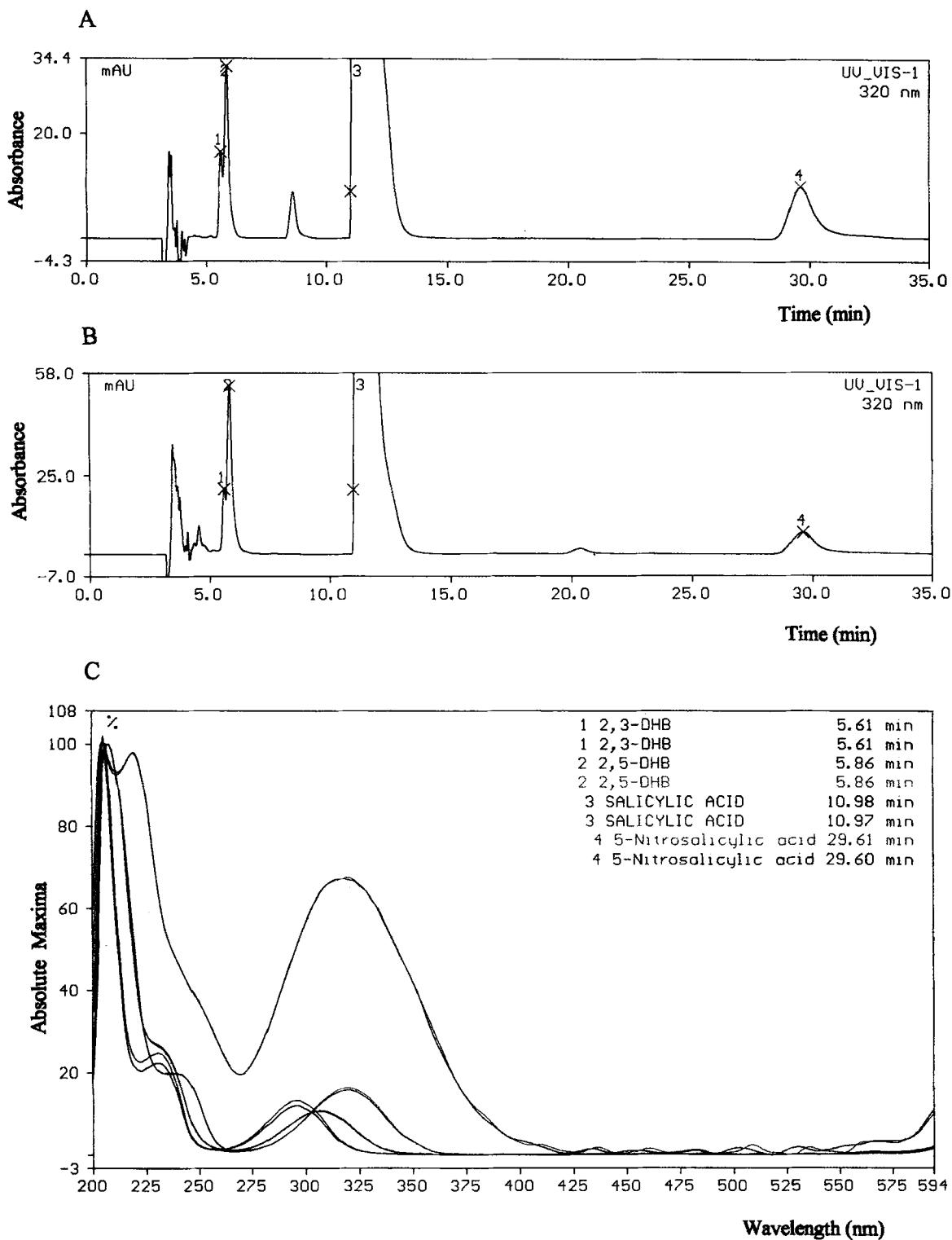


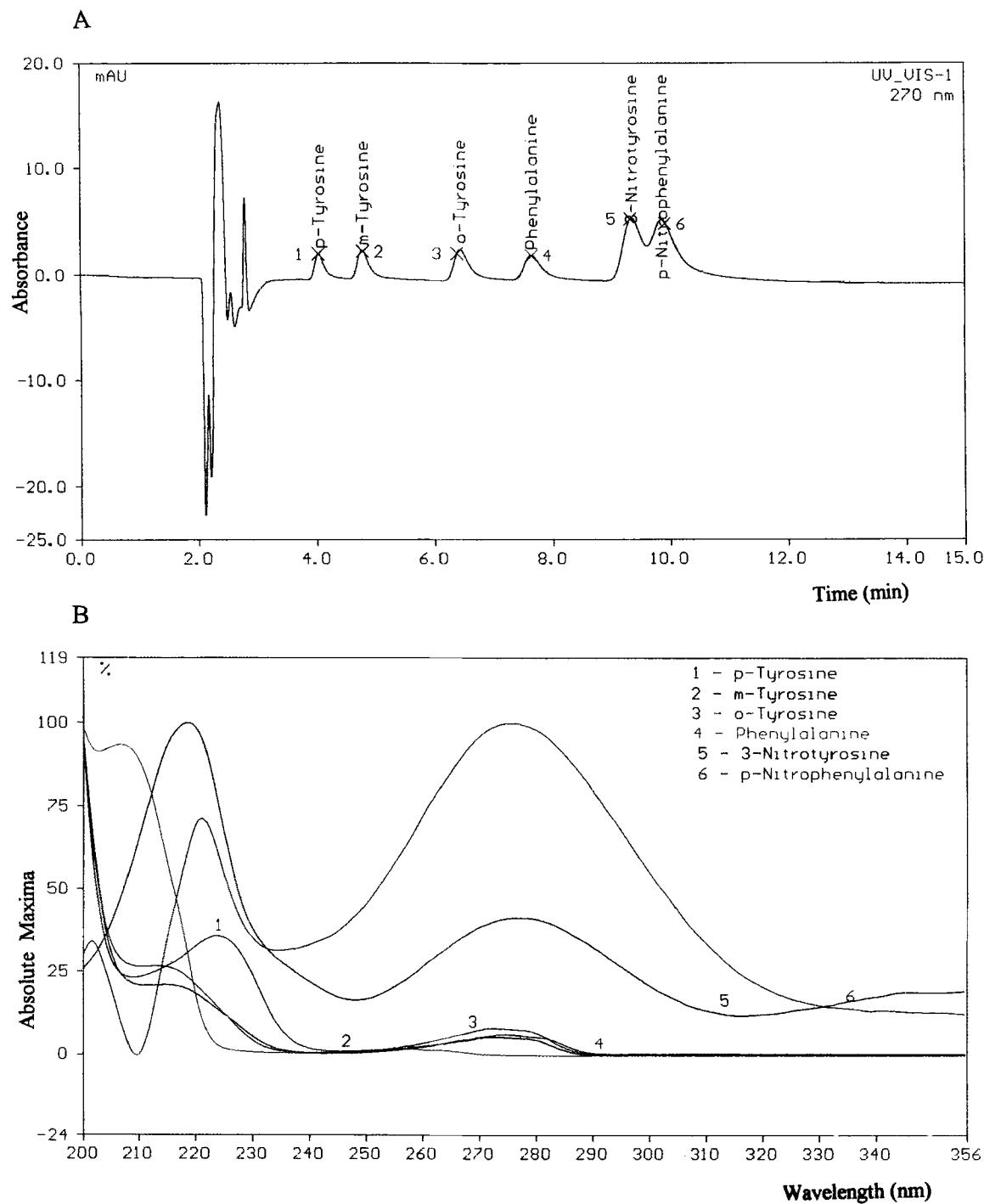
FIGURE 5. A. HPLC separation of a standard mixture of phenylalanine and its hydroxylation and nitration products (*para*-, *meta*-, *ortho*-, and 3-nitro-tyrosines, *p*-nitrophenylalanine, 5 μ M each; and phenylalanine, 200 μ M) following our previously-published procedure.²⁶ Essentially 100 μ l of the standard mixture was injected onto a nucleocil 5 μ m C₁₈ column (25 \times 4.6 mm) with a Hibar guard column and 500 mM KH₂PO₄-H₃PO₄ (pH 3.01) plus methanol (90:10, v/v) as eluent at a flow rate of 1 ml min⁻¹. Detection was on a photo-diode array detector (Gynkotek—UVD-320, HPLC Technology Ltd) set at 270 nm. Peaks before 4 min are due to the solvent front. B. UV absorbance spectrum of each peaks on the photo-diode array detector. (See Color Plate III at the back of this issue.)

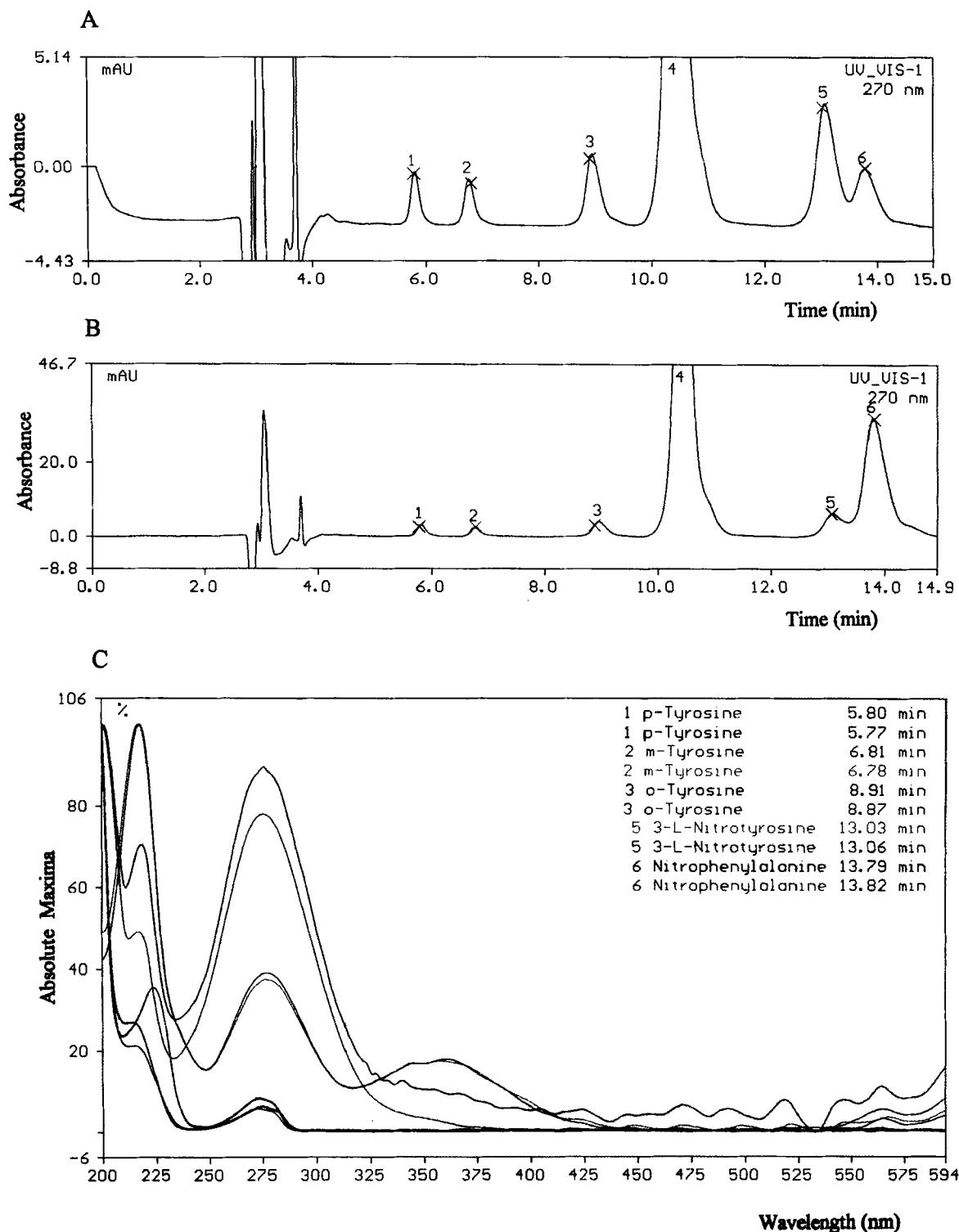
- [9] Beal, M. F. (1997). Oxidative damage in neurodegenerative diseases. *Neuroscientist*, **3**, 327–333.
- [10] Floyd, R. A., Watson, J. J. and Wong, P. K. (1984). Sensitive assay of hydroxyl free radical formation utilizing high pressure liquid chromatography with electrochemical detection of phenol and salicylate hydroxylation products. *Journal of Biochemical and Biophysical Methods*, **10**, 221–235.
- [11] Grootveld, M. and Halliwell, B. (1986). Aromatic hydroxylation as a potential measure of hydroxyl radical formation in vivo. Identification of hydroxylated derivatives of salicylate in human body fluids. *Biochemical Journal*, **237**, 499–504.
- [12] Halliwell, B. and Grootveld, M. (1987). The measurement of free radical reactions in humans. *FEBS Letters*, **213**, 9–14.
- [13] Floyd, R. A., Henderson, R., Watson, J. J. and Wong, P. K. (1986). Use of salicylate with high pressure liquid chromatography and electrochemical detection (LED) as a


FIGURE 6. A. HPLC separation of a standard mixture as in 5A with 5 mM phenylalanine instead of 200 μ M. (The scale is expanded). B. Separation of the above products from a reaction mixture resulting from addition of peroxy nitrite (1.0 mM) to phenylalanine (5 mM) in 100 mM phosphate buffer pH 7.4. Peaks before 4 min are due to the solvent front. C. UV absorbance spectral match of each the peak detected with those of authentic standards. (See Color Plate IV at the back of this issue.)

sensitive measure of hydroxyl free radicals in adriamycin-treated rats. *Free Radical Biology and Medicine*, **2**, 13–18.


- [14] Powell, S. R. (1994). Salicylate trapping of OH radicals as a tool for studying post-ischemic oxidative injury in the isolated rat heart. *Free Radical Research*, **21**, 355–370.
- [15] O'Connell, M. J. and Webster, N. R. (1990). Hyperoxia and salicylate metabolism in rats. *Journal of Pharmacy and Pharmacology*, **42**, 205–206.
- [16] Cao, W., Carney, J. M., Duchon, A., Floyd, R. A. and Chevion, M. (1988). Oxygen free radical involvement in ischemia and reperfusion injury to brain. *Neuroscience Letters*, **88**, 233–238.
- [17] Sloot, W. N. and Gramsbergen, J. B. P. (1995). Detection of salicylate and its hydroxylated adducts 2,3- and 2,5-dihydroxybenzoic acids as possible indices for *in vivo* hydroxyl radical formation in combination with catechol- and indoleamines and their metabolites in cerebrospinal fluid and brain tissues. *Journal of Neuroscience Methods*, **60**, 141–149.
- [18] Giovanelli, A., Liang, L. P., Hastings, T. G. and Zigmund, M. J. (1995). Estimating hydroxyl radical con-


Color Plate I (See page 242 Figure 3) **A.** HPLC separation of a standard mixture of salicylate and its hydroxylation and nitration products following our previously-published procedure²⁶ (2,3-DHB and 2,5-DHB each at 25 μ M, 5-nitrocatechol at 25 μ M, 5-nitrosalicylic acid at 25 μ M, and salicylic acid at 1.25 mM). Essentially 100 μ l of the standard mixture was injected onto a nucleocil 5 μ M C₁₈ column (30 x 4.6 mm) with a Hibar guard column and 500 mM KH₂PO₄-KOH (pH 6.6) plus methanol (80:20, v/v) at a flow rate of 1 ml min⁻¹ as the eluent. Detection was on a photo-diode array detector (Gynkotek—UVD 320, HPLC Technology Ltd) set at 320 nm. Peaks before 4 min are due to the solvent front. **B.** UV absorbance spectrum of each peak on the photo-diode array detector.

Color plate II (See page 242 Figure 4) **A.** HPLC separation of a standard mixture as in Fig. 3A with 5-nitrocatechol at 5 μ M, 5-nitrosalicylic acid at 10 μ M and salicylic acid at 5 mM instead of the amounts stated above. (The scale is expanded). **B.** Separation of the above products from a reaction mixture resulting from addition of peroxynitrite (1.0 mM) to salicylate (5 mM) in 100 mM phosphate buffer pH 7.4. Nitrocatechol (peak at ~ 8.3 mins on Fig. 4A) is presumably produced in amounts too small to detect, but the nitrosalicylate peak is clear. Peaks before 4 min are due to the solvent front. **C.** UV absorbance spectral match of each peak detected with that of authentic standards. At this pH nitro-compounds have little absorbance at higher wavelength.

Color Plate III (See page 243 Figure 5) **A.** HPLC separation of a standard mixture of phenylalanine and its hydroxylation and nitration products (*para*-, *meta*-, *ortho*-, and 3-nitro-tyrosines, *p*-nitrophenylalanine, 5 μ M each; and phenylalanine, 200 μ M) following our previously-published procedure.²⁶ Essentially 100 μ l of the standard mixture was injected onto a nucleocil 5 μ m C₁₈ column (25 x 4.6 mm) with a Hibar guard column and 500 mM KH₂PO₄-H₃PO₄ (pH 3.01) plus methanol (90:10, v/v) as eluent at a flow rate of 1 ml min⁻¹. Detection was on a photo-diode array detector (Gynkotek—UVD-320, HPLC Technology Ltd) set at 270 nm. Peaks before 4 min are due to the solvent front. **B.** UV absorbance spectrum of each peaks on the photo-diode array detector.

Color Plate IV (See page 243 Figure 6) **A.** HPLC separation of a standard mixture as in 5A with 5 mM phenylalanine instead of 200 μ M. (The scale is expanded). **B.** Separation of the above products from a reaction mixture resulting from addition of peroxynitrite (1.0 mM) to phenylalanine (5 mM) in 100 mM phosphate buffer pH 7.4. Peaks before 4 min are due to the solvent front. **C.** UV absorbance spectral match of each the peak detected with those of authentic standards.

- tent in rat brain using systemic and intraventricular salicylate: impact of methamphetamine. *Journal of Neurochemistry*, **64**, 1819–1825.
- [19] Coyle, J. T. and Puttfarcken, P. (1993). Oxidative stress, glutamate, and neurodegenerative disorders. *Science*, **262**, 589–595.
- [20] Hammer, B., Parker Jr., W. D. and Bennett JR, J. P. (1993). NMDA receptors increase OH[·] radicals *in vivo* by using nitric oxide synthase and protein kinase C. *NeuroReport*, **5**, 72–74.
- [21] Halliwell, B., Kaur, H. and Ingelman-Sundberg, M. (1991). Hydroxylation of salicylate as an assay for hydroxyl radicals: a cautionary note. *Free Radical Biology and Medicine*, **10**, 339–341.
- [22] Montgomery, J., Ste-Marie, L., Boismenu, D. and Vachon, L. (1995). Hydroxylation of aromatic compounds as indices of hydroxyl radical production: a cautionary note revisited. *Free Radical Biology and Medicine*, **19**, 927–933.
- [23] Beckman, J. S., Chen, J., Ischiropoulos, H. and Crow, J. P. (1994). Oxidative chemistry of peroxynitrite. *Methods Enzymology*, **233**, 229–240.
- [24] Huie, R. E. and Padmaja, S. (1993). The reaction of NO with superoxide. *Free Radical Research Communications*, **18**, 195–199.
- [25] Ramezarian, M. S., Padmaja, S. and Koppenol, W. H. (1996). Nitration and hydroxylation of phenolic compounds by peroxynitrite. *Chemical Research in Toxicology*, **9**, 232–240.
- [26] Kaur, H., Whiteman, M. and Halliwell, B. (1997). Peroxynitrite-dependent aromatic hydroxylation and nitration of salicylate and phenylalanine. Is hydroxyl radical involved? *Free Radical Research*, **26**, 71–82.
- [27] Skinner, K. A., Wang, Z. and Parks, D. A. (1996). Detection of salicylate nitration and hydroxylation products after liver preservation. *Free Radical Biology and Medicine: Abstracts of Oxygen 96: the 3rd Annual Meeting of the Oxygen Society* p77.
- [28] Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A. and Freeman, B. A. (1991). Apparent hydroxyl radical production by peroxynitrite; implications for endothelial injury from nitric oxide and superoxide. *Proceedings of the National Academy of Sciences of the USA*, **87**, 1620–1624.
- [29] Van der Vliet, A., O'Neill, C. A., Halliwell, B., Cross, C. E. and Kaur, H. (1994). Aromatic hydroxylation and nitration of phenylalanine and tyrosine by peroxynitrite. *FEBS Letters*, **339**, 89–92.
- [30] Yang, G., Candy, T. G. E., Boaro, M., Wilkin, H. E., Jones, P., Nazhat, N. B., Saadalla-Nazhat, R. A. and Blake, D. R. (1992). Free radical yields from the homolysis of peroxynitrous acid. *Free Radical Biology and Medicine*, **12**, 327–330.
- [31] Pou, S., Nguyen, S. Y., Gladwell, T. and Rosen, G. M. (1995). Does peroxynitrite generate hydroxyl radical? *Biochimica et Biophysica Acta*, **1244**, 62–68.
- [32] Pryor, W. A. and Squadrito, G. L. (1995). The chemistry of peroxynitrite—a product from the reaction of nitric oxide with superoxide. *American Journal of Physiology*, **268**, L699–722.
- [33] Crow, J. P., Spruell, C., Chen, J., Gunn, C., Ischiropoulos, H., Tsai, M., Smith, C. D., Radi, R., Koppenol, W. H. and Beckman, J. S. (1994). On the pH-dependent yield of hydroxyl radical products from peroxynitrite. *Free Radical Biology and Medicine*, **16**, 331–338.
- [34] Koppenol, W. H., Moreno, J. J., Pryor, W. A., Ischiropoulos, H. and Beckman, J. S. (1992). Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. *Chemical Research in Toxicology*, **5**, 834–842.
- [35] Pryor, W. A., Jin, X. and Squadrito, G. L. (1996). Insensitivity of the rate of decomposition of peroxynitrite to changes in viscosity: evidence against free radical formation. *Journal of the American Chemical Society*, **118**, 3125–3128.
- [36] Lemercier, J.-N., Squadrito, G. L. and Pryor, W. A. (1995). Spin Trap studies on the decomposition of peroxynitrite. *Archives of Biochemistry and Biophysics*, **321**, 31–39.
- [37] Shi, X., Lenhart, A. and Mao, Y. (1994). ESR spin trapping investigation of peroxynitrite decomposition: no evidence for hydroxyl radical production. *Biochemical and Biophysical Research Communications*, **203**, 515–512.
- [38] Van der Vliet, A., Eiserich, J. P., O'Neill, C. A., Halliwell, B. and Cross, C. E. (1995). Tyrosine modification by reactive nitrogen species: a closer look. *Archives of Biochemistry and Biophysics*, **319**, 341–349.
- [39] Lyman, S. V. and Hurst, J. K. (1995). Rapid reaction between peroxynitrite ion and carbon dioxide: implications for biological activity. *Journal of the American Chemical Society*, **117**, 8867–8868.
- [40] Uppu, R. M., Squadrito, G. L. and pryor, W. A. (1996). Acceleration of peroxynitrite oxidations by carbon dioxide. *Archives of Biochemistry and Biophysics*, **327**, 335–343.
- [41] Kaur, H., Fagerheim, I., Grootveld, M., Puppo, A. and Halliwell, B. (1988). Aromatic hydroxylation of phenylalanine as an assay for hydroxyl radicals: application to activated human neutrophils and to the heme protein leghemoglobin. *Analytical Biochemistry*, **172**, 360–367.
- [42] Ishimitsu, S., Fujimoto, S. and Ohara, A. (1984). Hydroxylation of phenylalanine by the hypoxanthine-xanthine oxidase system. *Chemical and Pharmaceutical Bulletin*, **32**, 4645–4649.
- [43] Karam, L. R. and Simic, M. G. (1988). Detecting irradiated foods: use of hydroxyl radical biomarkers. *Analytical Chemistry*, **16**, 1117A–1119A.
- [44] Kaur, H. and Halliwell, B. (1994). Aromatic hydroxylation of phenylalanine as an assay for hydroxyl radicals: measurement of hydroxyl radical formation from ozone and in blood from premature babies using improved HPLC methodology. *Analytical Biochemistry*, **220**, 11–15.
- [45] Kaur, H., Edmonds, S. E., Blake, D. R. and Halliwell, B. (1996). Hydroxyl radical generation by rheumatoid blood and knee-joint synovial fluid. *Annals of Rheumatic Disease*, **55**, 915–920.
- [46] Kaur, H. and Halliwell, B. (1994). Detection of hydroxyl radicals by aromatic hydroxylation. *Methods Enzymology*, **233**, 67–82.
- [47] Sun, J. Z., Kaur, H., Halliwell, B., Li, X. Y. and Bolli, R. (1993). Use of aromatic hydroxylation of phenylalanine to measure production of hydroxyl radicals after myocardial ischemia in intact dogs. *Circulation Research*, **73**, 534–549.
- [48] Whiteman, M. and Halliwell, B. (1997). Thiourea and dimethylthiourea inhibit peroxynitrite-dependent damage: non-specificity as hydroxyl radical scavengers. *Free Radical Biology and Medicine*, **22**, 1309–1312.